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Laboratory experiments on stably stratified grid turbulence have suggested that turbu-
lent diffusivity κρ can be expressed in terms of a turbulence activity parameter ε/νN2,
with different power-law relations appropriate for different levels of ε/νN 2. To further
examine the applicability of these findings to both a wider range of the turbulence in-
tensity parameter ε/νN2 and different forcing mechanisms, DNS data of homogeneous
sheared stratified turbulence generated by Shih et al. (2000) and Venayagamoorthy
et al. (2003) are analysed in this study. Both scalar eddy diffusivity κρ and eddy
viscosity κν are found to be well-correlated with ε/νN2, and three distinct regimes of
behaviour depending on the value of ε/νN2 are apparent. In the diffusive regime D,
corresponding to low values of ε/νN2 and decaying turbulence, the total diffusivity
reverts to the molecular value; in the intermediate regime I , corresponding to 7<

ε/νN2 < 100 and stationary turbulence, diffusivity exhibits a linear relationship with
ε/νN 2, as predicted by Osborn (1980); finally, in the energetic regime E, corres-
ponding to higher values of ε/νN 2 and growing turbulence, the diffusivity scales with
(ε/νN2)1/2. The dependence of the flux Richardson number Rf on ε/νN 2 explains
the shift in power law between regimes I and E. Estimates for the overturning length
scale and velocity scales are found for the various ε/νN 2 regimes. It is noted
that ε/νN2 ∼ Re/Ri ∼ ReFr2, suggesting that such Reynolds–Richardson number or
Reynolds–Froude number aggregates are more descriptive of stratified turbulent flow
conditions than the conventional reliance on Richardson number alone.

1. Introduction
The vertical transport of heat and mass in stably stratified turbulent flows is an im-

portant component in the dynamics of geophysical flows. Quantifying the irreversible
mixing due to vertical transport is fundamental to understanding the global heat
budget of the oceans and atmosphere. The traditional measure of scalar flux is
turbulent scalar diffusivity κρ . Field experiments (e.g. Gregg 1998) typically measure
dissipation ε and then infer κρ from parameterizations, such as that proposed by
Osborn (1980).

Despite the widespread use of this approach, there have been few attempts to verify
such parameterizations by directly measuring κρ , especially when the scalar is actively

† Joel Ferziger passed away on 16 August 2004.
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contributing to the background density gradient, and correlating that measurement
with independent measurements of dissipation and ambient fluid properties. Barry
et al. (2001, hereinafter referred to as BIWI) conducted laboratory experiments in
a closed tank filled with a density stratified fluid uniformly and constantly stirred
by a horizontally oscillating vertical grid. The purpose of these experiments was to
independently measure the dissipation and turbulent length scales and to relate these
quantities to direct measurements of the diapycnal diffusivity of the active stratifying
species. The scalar diffusivity was computed from the observed rate of change of
background potential energy of the stratified fluid. They found that turbulent flows
can be characterized according to the energy level as measured by a turbulence
intensity parameter commonly used in oceanography, ε/νN2. An important feature
of their experiments was that ε/νN2 varied widely and systematically over a large
range, from 10 to 105. Within this parameter range, BIWI identified two regimes of
behaviour for the turbulence, and they further found that within these regimes, κρ and
also the root-mean-square turbulent length scale Lt can be predicted by functions of
ε/νN 2. The observed diffusivity was within a factor of two of the Osborn prediction
for their weakly energetic regime but was considerably less than the Osborn prediction
in their energetic regime.

In order to test some of the observations from the BIWI experiments, Barry (2002)
examined other data sets from published laboratory and numerical observations (see
Ivey, Imberger & Koseff 1998; Shih et al. 2000; Stillinger, Helland & Van Atta 1983;
Itsweire, Helland & Van Atta 1986; Yoon & Warhaft 1990). These data sets encom-
passed a wider variety of turbulence generation mechanisms and fluid properties than
were accessible in the BIWI laboratory experiments. There was support for some of
the relationships suggested in the experiments of BIWI, but definitive conclusions
were difficult to make from such diverse data sets, with each data set often limited in
parameter range. Furthermore, the laboratory experiments of BIWI were also limited
in the information that could be obtained in the oceanically important range of
ε/νN 2 < 300, where turbulence is less energetic.

This study focuses on a recent and very extensive data set generated from direct
numerical simulation (DNS) of a stably stratified shear flow, both to test some of the
predictions from the BIWI study and to extend our understanding of the energetics of
stratified turbulence, particularly in the weakly energetic regime (ε/νN2 < 300), which
was not accessible in the BIWI study. The turbulence intensity parameter ε/νN2

is employed to characterize the energetics of stratified turbulent flow in this study
because of its common use in previous studies in the oceanographic community. For
instance, the Osborn model expresses turbulent diffusivity as a function of ε/νN2. We
will use the Osborn model as a starting point for our inquiries into the natures of
turbulent fluxes.

Rehmann & Koseff (2004, hereinafter referred to as RK) and Jackson & Rehmann
(2003, hereinafter referred to as JR) also performed laboratory experiments which
yielded complementary data sets useful to this study. RK conducted towed-grid
experiments in stratified water, varying the stratifying agent among salt only, heat
only, and both salt and heat combined, in order to examine the effect of molecular
diffusivity on mean potential energy change or mixing efficiency in stratified flow.
They found that eddy diffusivity decreases with increasing stratification (decreasing
ε/νN 2) but does not appear to depend on molecular diffusivity. The RK data set also
represents a wider range of the turbulence intensity parameter than is available from
the BIWI data set, with ε/νN 2 ranging from around 1 to around 106. JR studied
differential diffusion and its effect on mixing efficiency by stirring a salt and heat
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Run ν Ri S∗
0 Run ν Ri S∗

0

fp 0.005 0.04 16 fc* 0.005 0.16 4
ek 0.005 0.05 4 fb* 0.005 0.16 8
fk 0.005 0.05 8 fd 0.005 0.16 16
fe 0.01 0.06 2 bk 0.01 0.17 2
ff 0.005 0.06 4 bz 0.005 0.17 4
fg 0.005 0.06 8 br 0.005 0.17 8
fh 0.005 0.06 16 bx* 0.003 0.17 12
el 0.005 0.10 4 bp 0.005 0.18 4
fl 0.005 0.10 8 bl 0.01 0.19 2
bj 0.01 0.14 2 bo 0.005 0.20 4
bm 0.005 0.14 4 em 0.005 0.25 4
bw 0.003 0.14 12 fm 0.005 0.25 8
bn 0.005 0.15 4 fi 0.005 0.37 4
bq 0.005 0.15 8 en 0.005 0.40 4
bu 0.003 0.15 12 fn 0.005 0.40 8
bv 0.003 0.16 12 eo 0.005 0.60 4
fz* 0.005 0.16 2 fo 0.005 0.60 8
fa 0.01 0.16 2 fr 0.005 1.00 8

fq 0.005 1.00 16

Table 1. Parameter values for the runs analysed. Prandtl number Pr= 0.72, initial Taylor mi-
croscale Reynolds number Reλ0 = 89.44 in all cases. * indicates a stationary turbulence case.

stratified flow with horizontally oscillating vertical rods. They found that differential
transport of salt and heat occurs for less energetic flows with ε/νN2 < 300, leading
to increased mixing efficiencies. In general, their measured values of scalar eddy
diffusivity matched well with those of the RK data set.

We will use our DNS results, combined with the laboratory data from RK, JR,
and BIWI, to examine the relationship between κρ and ε/νN2, and also the Prandtl
number Pr = ν/κ for different turbulent regimes. Then, we will attempt to correlate the
overturning length scale and velocity scale with external, and thus readily measureable,
flow properties for each regime of turbulence. And finally, alternatives to ε/νN2 will
be suggested for the parameterization of the turbulence activity in stratified turbulent
flow.

2. The data
The Boussinesq approximation of the Navier–Stokes equations for homogeneous,

sheared, stratified turbulent flow were solved using Rogallo’s pseudospectral method
(Rogallo 1981) on a 1283 grid with periodic boundary conditions. For more details
about the code, see Holt, Koseff & Ferziger (1992).

Direct numerical simulations were made for flows with a variety of gradient
Richardson numbers Ri = N 2/S2 and initial dimensionless shear rates S∗ = Sq2/ε.
Here, N =

√
−g/ρ0∂ρ/∂z is the buoyancy frequency, with g being the acceleration

due to gravity and ρ0 the reference density; S = dU/dz is the shear rate of the mean
streamwise velocity U in the vertical (opposite to gravity) direction z, K = q2/2 is
the turbulent kinetic energy, and ε is the rate of dissipation of the turbulent kinetic
energy. Table 1 lists the parameter values for the various runs used in this paper. The
viscosities are varied between 0.003 and 0.01 cm2 s−1. The initial dimensionless shear
rates are set between 2 and 16.
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While the statistics of each numerical run are time dependent as the flow evolves
from initial conditions, Ri is by construction constant for each run for all time. As
listed in table 1, the gradient Richardson numbers of the various runs range from
weakly stratified at 0.04 to strongly stratified at 1. It should be noted that, since a
constant density gradient is maintained throughout each run, κρ cannot be determined
from the change in background potential energy measured in the flow as done by the
laboratory experiments, but instead must be calculated from the computed buoyancy
flux, as described by (3.1) and (3.2) below.

The data set analysed in this paper consists of our highest Reynolds number runs
(Reλ0 = 89.44, where Reλ0 is the initial value specified for the Reynolds number based
on the Taylor microscale Reλ = qλ/ν) with an k2-exponential initial energy spectrum
from the numerical experiments conducted by Shih et al. (2000) and Venayagamoorthy
et al. (2003).

The data set includes a number of cases not used by Barry (2002), namely the
non-stationary turbulence runs. Stationary turbulence is defined as turbulence which
is neither growing nor decaying with time. It should also be noted that, in addition to
being numerically simulated rather than experimentally observed, the DNS data differ
from that of BIWI and earlier works in that the turbulence is generated by mean
shear rather than grid stirring, and the Prandtl number Pr = ν/κ is that of thermally
stratified air rather than that of the salinity or thermally stratified water used in the
laboratory experiments. The values of the momentum and scalar diffusivities (ν and
κ , respectively) are varied from run to run while their ratio Pr is maintained at a
constant value of 0.72.

Statistical quantities are obtained by spatially averaging the data over the horizontal
and vertical extents of the computational domain. Due to the non-stationary nature
of many of the runs, the results presented were not time-averaged over each run,
in order to avoid any obscuring of, or obsfucating by, time-dependent relationships
among various quantities as the flow develops. Instead, the data shown are gathered
from the non-dimensional shear time range of St � 4 to the end of the simulation
time. At each time step (where the size of the time step is determined by the standard
CFL condition), instantaneous ensemble-averaged statistics are recorded to quantify
the dynamics of the homogeneous three-dimensional flow field. Since the initial energy
spectrum does not represent fully developed turbulence, there is an initial transient
as the flow begins to develop, and so the data from St < 4 are not included in our
results. Most of the simulations were ended around St = 12 due to the domain effects
(namely, to ensure that turbulent structures were not influenced by the size of the
computational domain). The results from a better-resolved case run on a 2563 grid
verify, as discussed in Shih et al. (2000) and in further detail in Shih (2003), that the
DNS calculations presented here are suitably grid-independent.

3. Turbulent diffusivities
The turbulent scalar diffusivity is calculated from

κρ =
b

N2
, (3.1)

where b is the buoyancy flux, defined as

b = − g

ρ0

ρ ′w′. (3.2)
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Figure 1. Total scalar diffusivity, normalized by molecular diffusivity κ , versus the turbulence
intensity parameter ε/νN2. – –, κ tot

ρ /κ = 0.2Prε/νN2 (Osborn 1980); · · ·, κ tot
ρ /κ = 5Pr(ε/νN2)1/3

(after Barry 2002); —, κ tot
ρ /κ = 2Pr(ε/νN2)1/2 (best fit).
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Figure 2. Total momentum diffusivity, normalized by molecular viscosity ν, versus the
turbulence intensity parameter ε/νN2.

Here and elsewhere, the overbar denotes ensemble averaging. The total scalar diffu-
sivity is then just the turbulent value added to the molecular diffusivity of the scalar,
or κ tot

ρ = κρ + κ . Figure 1 shows the total diffusivity normalized by κ plotted against

ε/νN 2. Similarly, for the diffusivity of momentum, eddy viscosity is calculated from

κν = −u′w′

S
(3.3)

and a total viscosity can be defined as κ tot
ν = κν + ν. Figure 2 shows the total viscosity

normalized by the molecular viscosity ν plotted against ε/νN2.
The data in both figures 1 and 2 collapse very well over the entire range of ε/νN2.

The simulated values of ε/νN 2 vary from 0.5 to 1000, and the corresponding variation
in both the total scalar and momentum diffusivities is nearly two orders of magnitude.
The diffusivity and viscosity both vary smoothly from their molecular limits of κ and
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ν at small ε/νN2 to an upper bound of about 50 times their molecular values for the
highest value of ε/νN2.

Since both quantities are normalized by their molecular values in figures 1 and 2,
one would expect the minimum value in both cases to be unity. However at ε/νN2 < 7
in figure 1 and ε/νN 2 < 4 in figure 2, there is evidence of countergradient fluxes strong
enough to lead to apparent total diffusivities less than the molecular value (the true
lower limit). The predicted scalar diffusivities are only slightly below the molecular
limit at about 0.6κ , and the predicted momentum diffusivities are relatively weaker,
reaching a minimum of 0.2ν. No significant evidence of the effects of countergradient
fluxes can be detected for ε/νN 2 > 7. The implication is that modelling diffusivity
based on buoyancy flux or Reynolds stress, as done in (3.1) and (3.3), is thus really
only problematic in this range of low ε/νN2. A better estimate of mixing in this regime
might be obtained by following the diascalar flux model suggested by Winters &
D’Asaro (1996). It should be noted that the appearance of countergradient fluxes is
also likely to be Pr-dependent (e.g. Lienhard & Van Atta 1990).

Upon visual inspection, there are three discernible regimes in figures 1 and 2: a
diffusive regime D where ε/νN2 < 7; an intermediate regime I where 7 < ε/νN 2 < 100;
and an energetic regime E where ε/νN 2 > 100. This last regime coincides with a
working definition of ‘energetic’ as when the diffusivity is about ten times the molecular
value (i.e. ε/νN 2 ≈ 100). Furthermore, the data in the viscosity-dominated diffusive
regime are all from cases where the turbulence is decaying due to strong stratification.
In the intermediate regime, the data are from the stationary cases, where the turbulence
is neither growing nor decaying. And in the energetic regime, the data are from cases
with growing turbulence in weak stratification.

3.1. Estimating turbulent scalar diffusivity

By assuming a steady-state balance of the turbulent kinetic energy, Osborn (1980)
derived the commonly used relationship providing an upper bound for diffusivity in
the ocean thermocline

κρ �
Rcrit

f

1 − Rcrit
f

ε

N2
, (3.4)

where Rcrit
f is the critical flux Richardson number. The flux Richardson number Rf ,

or mixing efficiency, is defined as the ratio of the buoyancy flux to the turbulent
production, or

Rf =
b

b + ε
, (3.5)

and its critical value is the maximum value at which turbulence persists in a steady-
state flow.

Osborn (1980) recommended using Rcrit
f ≈ 0.17, based on the theoretical prediction

of Ellison (1957). Mixing efficiency, however, has been found to vary with Ri
(stratification) (see RK) and ε/νN2 (turbulence intensity) (see Gargett 1988); the
multiple field studies cited by Ruddick, Walsh & Oakey (1997) suggest values of Rf

ranging from 0 to 0.29. The dashed line plotted on top of the data in figure 1 is for
Rcrit

f =0.17, as recommended by Osborn and commonly used in oceanographic prac-
tice. In the intermediate regime I , this prediction is clearly consistent with the data.
Note that this value slightly underpredicts the data; a better fit is yielded by Rcrit

f = 0.2,
a value which is also often used in oceanography. In the energetic regime E, however,
this model not only overpredicts the computed diffusivity, but the two diverge as
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Figure 3. The flux Richardson number Rf versus the turbulence intensity parameter ε/νN2.
Note that the ordinate is plotted linearly, in order to include the negative (countergradient
flux) values. —, Rf = 1.5(ε/νN2)−1/2 curve fit.

ε/νN2 increases. This behaviour is in agreement with the laboratory observations of
BIWI.

The reason for this divergence is that the Osborn model was derived for equilibrium
or stationary conditions, i.e. shear production P in balance with buoyancy b and
dissipation ε. As seen in figure 3, for 20 <ε/νN 2 < 100, or most of the intermediate
range I , Rf is fairly constant around 0.2, which is the value of Rcrit

f often assumed
for stationary turbulence (see Holt et al. 1992). Not coincidentally, the data in the
intermediate range are from stationary, or very nearly stationary, turbulence runs. As
discussed in Shih et al. (2000), for a given level of initial turbulence, the Richardson
number (quantifying the strength of the stratification) determines whether the flow
will be stationary. In the energetic regime E, however, Rf declines from its critical
value because the turbulence is actively growing. (In the diffusive regime D, the pre-
sence of countergradient buoyancy fluxes yields negative values of Rf .) Clearly, an
alternative to the traditional Osborn model is required in the energetic regime.

The obvious alternative is simply to predict the scalar diffusivity of a flow with its
own flux Richardson number, rather than the critical value. As Ivey & Imberger (1991)
pointed out, the definition of mixing efficiency can be derived from the full turbulent
kinetic energy equation, without a simplifying assumption of steady-state stationarity.
Instead of using the steady-state assumption that P = b + ε, unsteady contributions
to the turbulent kinetic energyequation are retained: m = dK/dt + P = b + ε, and the
definition of the mixing efficiency is refined to be the ratio of b, the buoyancy flux, to
m, the net mechanical energy available to sustain turbulent motions. Thus (3.4), valid
only for cases of stationary turbulence, becomes the more general

κρ =
Rf

1 − Rf

ε

N2
. (3.6)

It is important to remember that the mixing efficiency Rf itself strongly depends on
ε/νN2.

Estimating the behaviour of Rf in relation to ε/νN 2, a least-squares power-law fit
to the data in the energetic regime of figure 3 suggests an exponent of −0.44, with a
correlation coefficient R2 = 0.8. Rounding the exponent to −0.5 and then substituting
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an approximation for mixing efficiency of

Rf ∼
(

ε

νN2

)−1/2

(3.7)

into the generalized Osborn model (3.6) yields

κρ

ν
∼ ε/νN2

(ε/νN2)1/2 − 1
(3.8)

or, since ε/νN2 � 1 in the energetic regime,

κρ

ν
∼

(
ε

νN2

)1/2

, (3.9)

which agrees with the best fit to the DNS data shown in figure 1.
For data in the range 102 <ε/νN 2 < 105, BIWI found that their data were well-

described by a functional form κρ ∼ (ε/N2)1/3. After examining other published data,
Barry (2002) suggested the best-fit relation κρ = 2.5ν(ε/νN2)1/3 for ε/νN2 > 100. As
seen in figure 1, this relation underpredicts the DNS data; a better fit appears to
be κρ = 5ν(ε/νN2)1/3, and better still is κρ = 2ν(ε/νN2)1/2, based on a least-squares
power-law fit to the data, with R2 = 0.82. These last two curve fits are presented in
figure 1 for comparison with the DNS data. Note that it is only in the energetic
regimes, and not the diffusive regime, where the mixing length model, on which the
Osborn and Barry predictions of κρ are based, can be expected to apply.

Since values of ε/νN2 from the DNS computations are in all cases less than 1000,
figures 4(a) and (b) include data from the laboratory flume experiments of BIWI, RK
and JR. Also included are previously generated, heretofore unpublished DNS data
by two of the authors from simulations with different Prandtl numbers, the para-
meters for which are listed in table 2. For the energetic regime (ε/νN2 > 100), a
least-squares power-law fit to all of the laboratory data yields the prediction, shown
in figure 4(a), that κ tot

ρ /ν ≈ 0.6(ε/νN 2)1/2 with an R2 = 0.89, lending further credence
to the 1/2-power law suggested by the DNS data.

Note that the dependent variable in figure 4(a) is κ tot
ρ /ν rather than κ tot

ρ /κ as in
figure 1; this change was made in order to account for the Prandtl number variation
among and within the various data sets. As a result of this alteration, the data in the
diffusive regime D go, as expected, to κ/ν = 1/Pr in figure 4, where Pr varies widely
between data sets. Even with this adjustment, the values of normalized diffusivity still
differ between the DNS data set (Pr ≈ 1) and the laboratory experiment data sets
(Pr ≈ 7, 700, and 3200) by up to a factor of about 4 in the energetic regime E and by
almost an order of magnitude in the intermediate regime I .

While some of the differences may be attributable to the different methods used to
compute κρ for the DNS and laboratory data, there is clearly a Prandtl number effect
which needs to be accounted for. Examining just the laboratory experiments, where
the Prandtl number varied from 7 to 3200, we observe some scatter in the data as
well. To collapse their data, BIWI normalized κρ by a combination of the momentum
and scalar diffusivities, namely ν2/3κ1/3; this is equivalent to multiplying κρ/ν by Pr1/3.
In the present case, however, the combined laboratory and DNS data are found to be
best collapsed with Pr1/5κρ/ν. The one-fifth power is arrived at by a simple process
of trial and error, and the general form of this relationship is supported by the heat
transfer literature. Kays & Crawford (1993), for instance, present many examples in
which the local Nusselt number (non-dimensional heat transfer coefficient) of a parti-
cular flow is expressed as a function of Prandtl number to some fractional power.
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Figure 4. Total scalar diffusivity κ tot
ρ versus the turbulence intensity parameter ε/νN2, DNS

and lab data. For clarity, the represented DNS data have been abridged by plotting only
the time-averaged, well-developed (St > 8) data from each run. �, DNS data, Pr= 0.72;
�, DNS data, Pr= 0.1; �, DNS data, Pr= 0.5; ·, DNS data, Pr= 1.0; �, DNS data,
Pr = 2.0; +, heat stratified cases (Pr ≈ 7), ×, salt stratified cases (Pr ≈ 700), and ∗, salt
and heat stratified cases (Pr ≈ 700), RK data; �, JR data (salt and heat stratified); �, salt
stratified water cases (Pr ≈ 700), and �, water–glycerol solution cases (Pr ≈ 3200), BIWI data.
(a) Total scalar diffusivity normalized by molecular viscosity ν. – –, κ tot

ρ /ν =0.2ε/νN2 (Osborn
1980); · · ·, κ tot

ρ /ν = 2.5(ε/νN2)1/3 (Barry 2002); —, κ tot
ρ /ν = 0.6(ε/νN2)1/2 (best fit to lab data).

(b) Total scalar diffusivity normalized by molecular viscosity ν and multiplied by Pr1/5. – –,
Pr1/5κ tot

ρ /ν = 0.2ε/νN2; —, Pr1/5κ tot
ρ /ν = 1.7(ε/νN2)1/2.

After collapsing the laboratory and DNS values of turbulent diffusivity with a
factor of Pr1/5, a least-squares approximation yields a 1/2 power law as the best fit
to the data, with R2 = 0.93, as shown in figure 4(b) and as suggested by the scaling
(3.9). This result suggests that a Prandtl number dependence needs to be included in
estimates for scalar diffusivity in terms of ε/νN2.

3.2. Estimating eddy diffusivity

In a fashion similar to how Osborn (1980) derived an expression for scalar diffusivity,
Crawford (1982) derived a relationship for turbulent eddy viscosity. Rewriting it to
include the effects of buoyancy and to couch it in terms of Rf yields

κν =
1

1 − Rf

ε

S2
=

1

1 − Rf

Ri
ε

N2
. (3.10)
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Run Ri Reλ0 Pr

bb 0.075 88 0.1
bc 0.21 88 0.1
bd 0.37 88 0.1
be 1.0 88 0.1
kb 0.075 88 0.5
kc 0.21 88 0.5
kd 0.37 88 0.5
bl 0.075 88 1.0
bm 0.21 88 1.0
bn 0.37 88 1.0
rb 0.0575 92 2.0
rc 0.21 87 2.0
rd 0.37 87 2.0
re 1.0 87 2.0

Table 2. Parameter values for the previous simulations by Koseff and Ivey (unpublished).
Viscosity ν = 0.01, initial non-dimensional shear S∗

0 = 3.1, and a top-hat initial energy spectrum
were used for all these runs.

100 101 102 103
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ε/vN 2

(κ
v 

+
 v

)/
vR

i

Figure 5. Total momentum diffusivity, normalized by molecular viscosity ν and divided by
Richardson number Ri, versus the turbulence intensity parameter ε/νN2. – –, (κν + ν)/(νRi) =
1.25ε/νN2 (Crawford 1982).

This relation is a commonly used estimate for eddy diffusivity (see, for example,
the recent field study by Kay & Jay 2003). A constant value of Rf =0.2 is used to
compare this relation to the data in figure 5. The figure shows that use of (3.10) is
reasonable for predicting the eddy diffusivity in both the intermediate and energetic
regimes, whereas the analogous relation for scalar diffusivity (3.4) held only for the
intermediate regime. Dividing κ tot

ν /ν by Ri evidently eliminates the change in slope
from the intermediate regime I and the energetic regime E that was evident in
figure 2. This is not surprising because dividing κ tot

ν /ν by Ri effectively compensates
for the dependence of Rf on ε/νN2 seen in figure 3.

3.3. Transition from the diffusive to intermediate regime

Transition from the diffusive regime to the intermediate regime occurs when turbulent
transport becomes significant, or when the turbulent diffusivity κρ is at least equal
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Figure 6. The flux Richardson number Rf versus the turbulence intensity parameter ε/νN2

for various Prandtl numbers Pr. Note that the ordinate is plotted linearly, in order to include
the negative (countergradient flux) values. The data shown are from non-dimensional shear
time St > 2. �, Pr = 0.1, +, Pr = 0.5, ×, Pr = 1.0, and �, Pr =2.0.

to the molecular value κ . The transition was previously defined, by inspection of
figure 1, to occur at ε/νN 2 ≈ 7. This definition can, however, be examined in a more
formal manner.

Using (3.6) to define turbulent scalar diffusivity, the condition for transition can be
expressed as

κρ =
Rf

1 − Rf

ε

N2
= κ, (3.11)

which rearranges to yield a prediction for the turbulence intensity at the transition
between regimes D and I :

ε

νN2
=

1 − Rf

Rf

1

Pr
. (3.12)

The Prandtl number dependence of the point of transition means that the relevant
value of ε/νN2 will be an order of magnitude smaller in the ocean than the atmos-
phere. Ivey, Winters & DeSilva (2000) suggested the same Prandtl number dependence
in their definition of scalar diffusivity based on diffusive flux.

The difficulty with using (3.12) to predict the value of ε/νN 2 at the transition
between the diffusive and intermediate regimes lies in the variability of Rf at low
values of ε/νN2, as seen in figure 3. Furthermore, the aforementioned unpublished
DNS results found a strong Prandtl number dependence in Rf itself at lower values
of ε/νN2, as shown in figure 6. Nevertheless, by using the upper bound of Rf ≈ 0.2
and Pr= 0.72 in (3.12), transition, when the total scalar diffusivity κ tot

ρ is 2κ , can be

estimated to occur at ε/νN 2 ≈ 7, in agreement with the data shown in figure 1.
Similarly, for the diffusivity of momentum, turbulent transport becomes significant

when the turbulent eddy viscosity κν equals the molecular viscosity ν, or, defining eddy
viscosity in terms of (3.10), transition from the diffusive regime to the intermediate
regime occurs when

κν =
1

1 − Rf

ε

S2
= ν, (3.13)
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Figure 7. (a) Turbulent Prandtl number PrT versus the turbulence intensity parameter ε/νN2.
Note that the ordinate is plotted linearly, due to its limited range. (b) Estimated turbulent
Prandtl number PrT ≈ Ri/Rf versus the turbulence intensity parameter ε/νN2.

which rearranges to yield

ε

νN2
= (1 − Rf )

1

Ri
. (3.14)

This expression is independent of Prandtl number, which makes sense because
the scalar diffusivity is not involved in the diffusion of momentum. The Richardson
number dependence, however, causes additional difficulty in the prediction of the
transitional value of ε/νN2 because Ri is constant for each run, yet Rf and ε/νN 2

vary fairly widely over each run. The data in the D–I transitional region are from
the high-Ri cases, indicating that values of Ri appropriate for use in (3.14) range
from around 0.4 to 1.0, which translates to transition, or total eddy diffusivity of 2ν,
occurring around ε/νN2 values of 1 or 2. This estimate is not unreasonable compared
to the data in figure 2.

3.4. Turbulent Prandtl number

The turbulent Prandtl number is defined as the ratio of the eddy viscosity to the
scalar diffusivity

PrT =
κν

κρ

(3.15)

and is plotted in figure 7(a). PrT approaches a constant value of approximately 0.8
for large values of ε/νN2 (greater than 100). This value agrees with the findings
of other numerical simulations, laboratory experiments, and field observations. For
instance, engineering correlations (enumerated in Kays & Crawford 1993) suggest
values of PrT in the range of 0.7 to 0.9 at Ri =0 (recall that low stratification or Ri
generally corresponds to higher turbulent energy or ε/νN 2), with a ‘preponderance’
of data indicating values of PrT ∼ 0.85 in turbulent shear layers. Also, Kim & Mahrt
(1992) proposed a Ri–PrT model of PrT = 1 + 3.8Ri, and Tjernström (1993) suggested
PrT = (1 + 4.47Ri)1/2. Both of these models assume that PrT =1 when Ri= 0, but the
(atmospheric) data from which they are derived seem to indicate, based on curves
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presented in the cited papers, that PrT is between 0.5 and 0.9 for Ri = 0; as is common
for field data, the scatter in their data is quite large.

Combining the estimates for the diffusivity of momentum given by (3.10) and the
diffusivity of the scalar given by (3.6), the turbulent Prandtl number can be estimated
by

PrT ≈ Ri

Rf

, (3.16)

or the ratio of the gradient Richardson number to the flux Richardson number. For
active turbulence, then, (3.16) simply implies that PrT ∼ O(1). As seen in figure 7(b),
this estimate yields PrT ≈ 0.6 for the energetic regime.

4. Length scales and velocity scales
In this section, we examine the length and velocity scale data for the turbulence

driving the stirring summarized in figures 1 and 2. Correlating the overturning length
scales and the velocity scales with other better understood or more readily available
quantities over the regimes of energetics defined in the previous section may be of
future utility in investigations of stratified turbulence.

4.1. Overturning length scale

In an attempt to understand and characterize the dynamics of turbulence in stratified
environments, a number of length scales have been defined in the literature. Here we
use our present DNS results to evaluate the utility of these length scales and length
scale relationships. Furthermore, since it is sometimes difficult to measure certain
length scales in the field, it is useful to find relationships between such length scales
and those more easily measured or calculated.

The Ellison length scale

Le =
ρ ′

∂ρ/∂z
(4.1)

is the overturning scale of turbulence in a turbulent density field, where ρ ′ is the
fluctuating density and ∂ρ/∂z is the mean density gradient. Itsweire et al. (1993)
found that the Ellison scale has a roughly linear relation to the r.m.s. vertical Thorpe
displacement scale Lt , with Le =0.8Lt , except at very high stratification where internal
waves become significant.

In figure 8, the Ellison scale is compared to three other length scales that have been
proposed in the literature. The Ozmidov length scale

Lo =

(
ε

N3

)1/2

(4.2)

is the buoyancy scale, at which the buoyancy forces balance the inertial forces, and
is often taken to be a universal descriptor of the overturning scale. Ivey et al. (2000)
defined the buoyancy length scale as

Lw =
(νε)1/4

N
, (4.3)

which they hypothesized to be relevant to weakly energetic stratified flows. The
primitive length scale

Lp =

(
ν

N

)1/2

(4.4)
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Figure 8. The Ellison length scale, normalized by (a) the Ozmidov length scale, (b) another
buoyancy length scale, and (c) the primitive length scale, versus the turbulence intensity
parameter ε/νN2. Note that the ordinate is plotted linearly, due to its limited range.

was shown by Saggio & Imberger (2001) to be a useful descriptor of overturning
scales in a lake thermocline. This length scale was also found by Barry (2002) to be
the best descriptor of the overturning scale of turbulence for highly energetic flows.

If the ratio of the observed overturning scale to one of the length scales defined in
(4.2), (4.3) or (4.4) is constant over a given energy regime, it is interpreted to mean
that this scale is a good predictor of the observed overturning scale. From figure 8, it
is clear that none of the length scales defined in (4.2)–(4.4) is a universal descriptor
of the overturning scale. The Ozmidov scale, plotted in figure 8(a), is expected to
be a good proxy for the overturning scale only over the very narrow range when
the turbulence is in equilibrium, or when Frt ∼ 1, using the definition for turbulent
Froude number of Frt = (Lo/Le)

2/3 as given in Ivey & Imberger (1991). The results
do not bear out this prediction, however, since Le/Lo is clearly not constant in the
intermediate regime I , where turbulence is roughly in equilibrium. Figures 8(b) and
8(c), however, suggest that there may be regimes where the overturning length scale
can be interpreted in terms of these other generic length scales.

From the previous section, we know that for ε/νN 2 < 7, the flow is stirred but
essentially laminar. Le in the diffusive regime D is not a measure of turbulent stirring,
since such a quantity is meaningless in this regime, and certainly one could not use
this length scale in any Prandtl-type mixing length model. Effectively, Le is a laminar
stirring scale, not a turbulent overturning scale, here. Therefore, it is not surprising
that comparisons with other turbulence length scales fail to yield viable correlations
in the diffusive regime D.

In the intermediate regime I (equilibrium turbulence), the best estimate for the
overturning length scale from figure 8(b) appears to be Le ≈ 2Lw . In the energetic
regime E, it is harder to draw definitive conclusions due to the scatter in the data. In
figure 8(c), in the energetic regime E, one estimate for the overturning length scale
is Le ≈ 6Lp . This result is consistent with the suggestion of Le ≈ 6.5Lp from Barry
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Figure 9. The ratio of the mixing length and the Ellison length scale versus the turbulence in-
tensity parameter ε/νN2. Note that the ordinate is plotted linearly, due to its limited range.

(2002), which came from examining data for flows with Pr =700. However, figures 8(a)
and 8(b) demonstrate that the overturning scale could be described almost as well in
terms of either Le ≈ 0.3Lo, which is associated with the least scatter, or Le ≈ 1.4Lw .

Note that in principle there should be at least one more regime of behaviour, in the
limit of unstratified flow when N is very small and ε/νN2 is very large, which is not
represented by the current DNS data. In this limit, the size of the overturns will be
influenced by the vertical domain scale and ultimately be determined by the Reynolds
number of the flow and not a stratification-dependent parameter such as ε/νN2.

4.2. Mixing length

The mixing length scale for the momentum field is

Lm = −
√

u′w′

dU/dz
. (4.5)

Figure 9 shows that the ratio of the mixing length to the Ellison length scale appro-
aches 0.4 with increasing ε/νN 2; for energetic flows, the two definitions of the repre-
sentative scales of turbulence converge.

This observed convergence is consistent with the following scaling argument: From
(3.1) and (3.2), the definitions of buoyancy flux and turbulent scalar diffusivity can be
rewritten, incorporating the definition of the turbulent Prandtl number (3.15), as

ρ ′w′ = − κν

PrT

∂ρ

∂z
. (4.6)

It has been shown (see Holt et al. 1992) that the vertical velocity–density correlation

Rρw =
ρ ′w′

ρ ′w′ (4.7)

tends to a constant value of approximately 0.3 for weak stratification, so, combining
(4.6) and (4.7), we have

ρ ′w′ =
ρ ′w′

Rρw

∼ − κν

PrT

∂ρ

∂z
. (4.8)
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Figure 10. The mixing length, normalized by (a) the Ozmidov length scale, (b) another
buoyancy length scale, and (c) the primitive length scale versus the turbulence intensity
parameter ε/νN2. Note that the ordinate is plotted linearly, due to its limited range.

Recalling the definition of the overturning scale Le given by (4.1) and rearranging
(4.8) yields

Le =
ρ ′

∂ρ̄/∂z
∼ − κν

PrT w′ ∼ − 1

PrT

q

w′
κν

q
. (4.9)

The ratio of the characteristic turbulent velocity scale q to the vertical velocity fluctua-
tion w′ is constant, and, as seen in figure 7(a), PrT goes to a constant in the energetic
regime. And since, from Prandtl’s original mixing length hypothesis, Lm ∼ κν/q , (4.9)
simplifies to

Le ∼ Lm (4.10)

in the energetic regime, as shown in figure 9.
The ratio of the overturning length scale to the mixing length scale for cases with

Ri � 0.6, on the other hand, is essentially zero. These outliers from the bulk of the
data are due to the extremely small magnitude of Lm in such strongly stratified cases.
The high-Ri data correspond to the very low ε/νN2 values in the diffusive regime.
Not surprisingly, strong stratification translates to greatly reduced dissipation, since
there is very little turbulence generated to dissipate. The mixing length is, if anything,
even less applicable than the Ellison scale in the diffusive regime.

Figure 10 compares the mixing length with the length scales used in figure 8. Here
we observe similar findings as for the scalar length scale (Le); this is not surprising,
since the two scales are equivalent in the energetic regime and equally meaningless in
the diffusive regime. The estimate Lm ≈ 0.75Lw in the intermediate regime (shown in
figure 10b) is perhaps clearer than in the counterpart Ellison scale relation. (As seen in
figure 9, the mixing length and the Ellison scale are not equivalent in the intermediate
regime.) In the energetic regime, the asymptotic behaviour of these mixing length
scale ratios is qualitatively identical to that of the overturning scale ratios in figure 8,
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Regime ε/νN2 range κ tot
ρ estimate κ tot

ν estimate Le estimate Lm estimate

D ε/νN2 < 7 κ ν – –
I 7 < ε/νN2 < 100 0.2ε/N2 0.2ε/N2 2Lw 0.75Lw

E ε/νN2 > 100 2ν(ε/νN2)1/2 1.5ν(ε/νN2)1/2 1.4Lw 0.6Lw

Table 3. Best estimates for the scalar diffusivity, eddy viscosity, and overturning length scale
in each regime of turbulence activity.
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Figure 11. The velocity q , normalized by (a) the Ozmidov velocity scale
√

ε/N and (b) the
primitive velocity scale

√
νN , versus the turbulence intensity parameter ε/νN2. —, q/

√
νN =

4(ε/νN2)1/3; – –, q/
√

νN = 3(ε/νN2)5/12.

and the magnitudes of the asymptotic values are related by the factor of 0.4 seen in
figure 9.

Table 3 summarizes the best estimates for the total scalar diffusivity κ tot
ρ and total

eddy viscosity κ tot
ν based on the assessment of figures 1 and 2, and for the overturning

length scale Le, based on figure 8, discussed above.

4.3. Velocity scales

Figure 11 shows the relation between velocity q , where q2 = u2 + v2 + w2, and ε/νN2.
The velocity can be normalized by the Ozmidov velocity scale

√
ε/N , as in figure 11(a),

or by the primitive velocity scale
√

νN , as in figure 11(b).
The Ozmidov velocity scale can be derived from dimensional analysis using the

variables, ε and N , associated with the Ozmidov scale. Recalling that BIWI observed
κρ ∼ ε/N2 in the Ozmidov limit, and that the mixing length model assumes κρ ∼ UL,
then with Lo ∼

√
ε/N3, the velocity scale is estimated as

U ∼
√

ε/N. (4.11)

Figure 11(a) indicates that this estimate is very good, and furthermore suggests that
the ratio q/(

√
ε/N ) decreases with increasing ε/νN2.
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The velocity scale in figure 11(b) is formed from dimensional analysis of the varia-
bles describing the primitive scale, ν and N . For the energetic regime, using Lp ∼

√
ν/N

as the length scale and assuming dissipation ε ∼ U 3/L (for the justification of this
scaling, see Ivey & Imberger 1991; Ivey et al. 1998; Kay & Jay 2003) yields

U ∼
√

νN

(
ε

νN2

)1/3

. (4.12)

As shown in table 3, Lw ∼ (νε)1/4/N appears to give the best estimate of the
overturning length scale in the intermediate range of ε/νN 2. Using this length scale
leads to a velocity estimate of

U ∼
√

νN

(
ε

νN2

)5/12

(4.13)

for the intermediate regime. In practical terms, there is very little difference between
the predicted forms of the velocity (4.12) and (4.13); accordingly, both of these
estimates are seen to agree very well with the data in figure 11(b) for the entire range
of ε/νN2 presented, and all that can be said is that the velocity data cannot be used
to distinguish the relative merits of either expression.

5. Discussion
We have shown that three basic regimes of energetics can be defined on the basis

of ε/νN 2. While this turbulence intensity parameter is useful in interpreting results, it
is of limited utility in numerical models which must rely on turbulence closures based
only on mean flow properties – in particular, the Richardson number Ri =N 2/S2 for
the mean flow. There is a long history of attempts to parameterize mixing in terms
of Ri based on the mean flow (for example, Munk & Anderson 1948; Pacanowski &
Philander 1981; Large, McWilliams & Doney 1994). In broad terms, as Richardson
number (stratification) goes down, the diffusivity (roughly speaking, mixing by turbu-
lence) goes up. However, as our DNS shows, there is a non-unique mapping between
Ri, a mean parameter describing the flow, and κρ , a parameter computed from time-
evolving statistics of the flow; for a given Ri, the diffusivity varies in time over the
course of each simulation, as shown in figure 14(a) below. The exception to this
behaviour is the small subset of data that are stationary turbulence runs, in which
the turbulence statistics do not vary in time. Thus, in general, the diffusivity of the
flow needs to be parameterized with more than just the Richardson number.

A simple scaling argument can recast ε/νN2 in terms of Re and Ri (parameters more
typically available to modellers). Again assuming dissipation ε ∼ u3/l and recalling
that mean shear S ∼ u/l,

ε

νN2
∼

(
u2

N2l2

)(
ul

ν

)
∼

(
S2

N2

)(
ul

ν

)
∼ Re

Ri
. (5.1)

Using a Reynolds number defined as ReΛ = qΛ/ν, where Λ is the average integral
length scale of the flow, figure 12 shows that (5.1) works very well for the intermediate
and energetic regimes. Since u/Nl also scales as the Froude number, it is equally valid
to state that

ε

νN2
∼ ReFr2. (5.2)

Using a local turbulent Froude number of Frk = ε/NK (where K = q2/2), figure 13
shows that the Reynolds–Froude number combination has a one-to-one relationship
to ε/νN 2 over all regimes of energetics for stratified turbulent flow. Both of these two
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Figure 13. The integral scale Reynolds number times the square of the turbulent
Froude number versus ε/νN2.

alternative parameterizations presented above demonstrate that in the unstratified
limit (Ri= 0 or large Fr and very large ε/νN2), it would be more useful and appro-
priate to parameterize the flow using Re alone.

In figure 14(a), scalar diffusivity is plotted as a function of Richardson number
alone. The values of diffusivity vary by factors of three or more for each Richardson
number. In figure 14(b), scalar diffusivity is plotted as a function of both
Richardson and Reynolds number. The parameter space is more continuous when a
Richardson and Reynolds number aggregate is considered. Consistent with the result
in figure 1, figure 14(b) also suggests the existence of three regimes of behaviour for
the scalar diffusivity. The transition to the diffusive regime D, where κ tot

ρ /κ < 1, occurs
roughly around ReΛ/Ri ≈ 150, and the energetic regime E, where κ tot

ρ /κ > 10, begins
at ReΛ/Ri ≈ 1000, with the intermediate regime I smoothly transitioning between the
other two. Not coincidentally, figure 12 shows that these demarcating values of ReΛ/Ri
correspond to the regime-delineating values of ε/νN2 discussed earlier (ε/νN 2 ≈ 7
translates to ReΛ/Ri ≈ 150, and ε/νN 2 ≈ 100 translates to ReΛ/Ri ≈ 1000). Table 4
summarizes the best fits for the scalar diffusivity found in figure 14(b). Similar findings
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Figure 14. Normalized total scalar diffusivity versus (a) the gradient Richardson number
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– –, κ tot

ρ /κ = 0.015ReΛ/Ri; —, κ tot
ρ /κ = 0.4(ReΛ/Ri)1/2.

Regime ε/νN 2 range ReΛ/Ri range κ tot
ρ estimate

D ε/νN 2 < 7 ReΛ/Ri< 150 κ

I 7< ε/νN 2 < 100 150 < ReΛ/Ri< 1000 0.015κReΛ/Ri
E ε/νN2 > 100 ReΛ/Ri> 1000 0.4κ(ReΛ/Ri)1/2

Table 4. Best estimates for the scalar diffusivity in each regime of turbulence activity,
in terms of Richardson number and Reynolds number.

result when assessing κν in relation to ReΛ/Ri, and also both diffusivities as functions
of ReΛFr2

k .

6. Conclusions
We have examined the behaviour of homogeneous, sheared, stratified turbulence for

stationary and non-stationary conditions. For both conditions, we found both scalar
eddy diffusivity κρ and eddy viscosity κν to be well-correlated with the parameter
ε/νN 2. Three distinct regimes of behaviour are found depending on the value of
ε/νN 2: a diffusive, an intermediate, and an energetic regime.
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The Osborn (1980) prediction for scalar diffusivity is in reasonable agreement with
the data only in the narrow intermediate regime I where 7 <ε/νN 2 < 100 and the flux
Richardson number Rf ∼ 0.20, indicating that the flow is approximately stationary.
This range of ε/νN 2 coincides with values in the ocean thermocline and probably
explains the general consistency between the diffusivity predicted by the Osborn
model and the vertical diffusivity inferred from passive tracer release experiments in
the ocean (e.g. Watson & Ledwell 2000). High values of ε/νN2 are certainly observed
in the ocean (e.g. Fleury & Lueck 1994), but significant portions of the domain in
many large natural water bodies have lower values of ε/νN 2 (e.g. Li & Yamazaki
2001; Saggio & Imberger 2001).

The present results show that even for unsteady flows, such as those in the energetic
regime E where ε/νN2 > 100, κρ and κν can be computed from instantaneous estimates
of ε/νN 2, or an equivalent measure of the intensity of the turbulence, such as Reλ/Ri
or ReλFr2

k . These estimates should always be valid provided the time scale of change
of the mean flow is long compared to the turnover time of the largest eddy in the
flow (e.g. Broadwell & Breidenthal 1982). By allowing for the variation of mixing
efficiency Rf with ε/νN2, we propose general forms for the diffusivities κρ and κν for
all three regimes, as summarized in table 3.

Using length scale information to prove the validity of a particular mixing model is,
at best, difficult, even with data from well-controlled laboratory or numerical experi-
ments as in this study. With the added difficulties of spatial and temporal variability
innate to almost all field experiments, such an endeavour may be impractical.

Our distinguished colleague Joel Ferziger died on 16 August 2004 after a very brave
struggle with cancer. His brilliance and his warmth will be greatly missed by his co-
authors. The authors would like to thank Chris Rehmann, Ryan Jackson, and Michael
Barry for sharing their lab data, and the anonymous reviewers of an earlier draft
of this paper for their constructive and helpful comments. G.N. I. acknowledges the
support provided by the Shimizu Visiting Professorship in Civil and Environmental
Engineering at Stanford University. This work was supported by Dr Lou Goodman
and Dr Stephen Murray at the Office of Naval Research under Grant No. N00014-
92-J-1611 and N00014-03-I-0422.

REFERENCES

Barry, M. E. 2002 Mixing in stratified turbulence. PhD thesis, Dept. of Environmental Engng,
Univ. of Western Australia.

Barry, M. E., Ivey, G. N., Winters, K. B. & Imberger, J. 2001 Measurements of diapycnal
diffusivities in stratified fluids. J. Fluid Mech. 442, 267–291 (referred to herein as BIWI).

Broadwell, J. E. & Breidenthal, R. E. 1982 A simple model of mixing and chemical reaction in
a turbulent shear layer. J. Fluid Mech. 125, 397–410.

Crawford, W. R. 1982 Pacific equatorial turbulence. J. Phys. Oceanogr. 12, 1137–1149.

Ellison, T. H. 1957 Turbulent transport of heat and momentum from an infinite rough plane.
J. Fluid Mech. 2, 456–466.

Fleury, M. & Lueck, R. G. 1994 Direct heat flux estimates using a towed vehicle. J. Phys. Oceanogr.
24, 801–818.

Gargett, A. E. 1988 The scaling of turbulence in the presence of stable stratification. J. Phys.
Oceanogr. 93, 5021–5036.

Gregg, M. C. 1998 Estimation and geography of diapycnal mixing in the stratified ocean. In
Physical Processes in Lakes and Oceans (ed. J. Imberger). Coastal and Estuarine Studies,
vol. 54, pp. 305–338. AGU Press.

Holt, S. E., Koseff, J. R. & Ferziger, J. H. 1992 A numerical study of the evolution and structure
of homogeneous stably stratified sheared turbulence. J. Fluid Mech. 237, 499–539.



214 L. H. Shih, J. R. Koseff, G. N. Ivey and J. H. Ferziger

Itsweire, E. C., Helland, K. N. & Van Atta, C. W. 1986 The evolution of grid-generated turbulence
in a stably stratified fluid. J. Fluid Mech. 162, 299–338.

Itsweire, E. C., Koseff, J. R., Briggs, D. A. & Ferziger, J. H. 1993 Turbulence in stratified shear
flows: Implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr. 23,
1508–1522.

Ivey, G. N. & Imberger, J. 1991 On the nature of turbulence in a stratified fluid, part I: The
energetics of mixing. J. Phys. Oceanogr. 21, 650–658.

Ivey, G. N., Imberger, J. & Koseff, J. R. 1998 Buoyancy fluxes in a stratified fluid. In Physical
Processes in Lakes and Oceans (ed. J. Imberger). Coastal and Estuarine Studies, vol. 54,
pp. 311–318. AGU Press.

Ivey, G. N., Winters, K. B. & DeSilva, I. P. D. 2000 Turbulent mixing in a sloping benthic
boundary layer energized by internal waves. J. Fluid Mech. 418, 59–76.

Jackson, P. R. & Rehmann, C. R. 2003 Laboratory measurements of differential diffusion in a
diffusively stable, turbulent flow. J. Phys. Oceanogr. 33, 1592–1603 (referred to herein as JR).

Kay, D. J. & Jay, D. A. 2003 Interfacial mixing in a highly stratified estuary. 1. characteristics of
mixing. J. Geophys. Res. 108 (C3), 3072.

Kays, W. M. & Crawford, M. E. 1993 Convective heat and mass transfer . New York: McGraw-Hill,
Inc.

Kim, J. & Mahrt, L. 1992 Simple formulation of turbulent mixing in the stable free atmosphere
and nocturnal boundary layer. Tellus 44A, 381–394.

Large, W., McWilliams, J. C. & Doney, S. C. 1994 Oceanic vertical mixing: A review and a model
with non-local boundary layer parameterization. Rev. Geophys. 32, 363–403.

Li, H. & Yamazaki, H. 2001 Observations of a Kelvin-Helmholtz billow in the ocean. J. Oceanogr.
57, 709–721.

Lienhard, J. H. & Van Atta, C. W. 1990 The decay of turbulence in thermally stratified flow.
J. Fluid Mech. 210, 57–112.

Munk, W. H. & Anderson, E. R. 1948 Notes on a theory of the thermocline. J. Mar. Res. 7,
276–295.

Osborn, T. R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements.
J. Phys. Oceanogr. 10, 83–89.

Pacanowski, R. C. & Philander, S. G. H. 1981 Parameterization of vertical mixing in numerical
models of tropical oceans. J. Phys. Oceanogr. 11, 1443–1451.

Rehmann, C. R. & Koseff, J. R. 2004 Mean potential energy change in stratified grid turbulence.
Dyn. Atmos. Oceans 37, 271–294 (referred to herein as RK).

Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA Tech. Mem. 81315.

Ruddick, B., Walsh, D. & Oakey, N. 1997 Variations in apparent mixing efficiency in the North
Atlantic central water. J. Phys. Oceanogr. 27, 2589–2605.

Saggio, A. & Imberger, J. 2001 Mixing and turbulent fluxes in the metallimnion of a stratified
lake. Limnol. Oceanogr. 46, 392–409.

Shih, L. H. 2003 Numerical simulations of stably stratified turbulent flow. PhD thesis, Dept. of
Civil and Environmental Engng, Stanford Univ.

Shih, L. H., Koseff, J. R., Ferziger, J. H. & Rehmann, C. R. 2000 Scaling and parameterization
of stratified homogeneous turbulent shear flow. J. Fluid Mech. 412, 1–20.

Stillinger, D. C., Helland, K. N. & Van Atta, C. W. 1983 Experiments on the transition of
homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech. 131, 91–122.

Tjernström, M. 1993 Turbulence length scales in stably stratified shear flow analyzed from slant
aircraft profiles. J. Appl. Met. 32, 948–963.

Venayagamoorthy, S. K., Koseff, J. R., Ferziger, J. H. & Shih, L. H. 2003 Testing of RANS
turbulence models for stratified flows based on DNS data. Center for Turbulence Research
Annual Research Briefs, Stanford Univ. pp. 127–138.

Watson, A. J. & Ledwell, J. R. 2000 Oceanographic tracer release experiments using sulphur
hexafluoride. J. Geophys. Res. 105, 14325–14337.

Winters, K. B. & D’Asaro, E. A. 1996 Diascalar flux and the rate of fluid mixing. J. Fluid Mech.
317, 179–193.

Yoon, K. H. & Warhaft, Z. 1990 The evolution of grid-generated turbulence under conditions of
stable thermal stratification. J. Fluid Mech. 215, 601–638.


